The generator matrix

 1  0  0  1  1  1  X  1  1  0  0  X  1  1  1  0  1  1  1  0  X  1  1  1  1  0  0  X  0  1  1  X  1  1  0  X  1  X  1  1  1  1  1  1  0  1  1  X  1  1  X  1  1  X  0  X  1  0  1  1  0  1  1
 0  1  0  0  1  1  1  0  X  X  1  1  1 X+1  0  1  1  X  1  1  0  0  0  1 X+1  1  1  X  0 X+1 X+1  X  X  0  X  1 X+1  1  1  1  1 X+1  X  0  1  0 X+1  1  1 X+1  1  1  X  0  1  1  X  1  X X+1  X  1 X+1
 0  0  1  1  1  0  1  X X+1  1  0  1 X+1  X  0 X+1 X+1  1  X  0  1  0  1 X+1  X  X  1  1  1 X+1  0  1  X X+1  1  X  1 X+1  0  0  X  X  0  1  X  0  0  1  0  X  1  X  0  0 X+1  0  X X+1 X+1 X+1  1  1  0
 0  0  0  X  0  0  0  0  0  0  0  0  X  X  X  X  0  0  0  X  0  X  X  X  X  X  X  0  X  X  0  X  X  0  X  0  X  X  X  X  0  0  0  0  0  X  X  X  0  0  X  X  X  X  X  X  X  X  X  0  0  X  X
 0  0  0  0  X  0  0  X  X  X  X  X  X  X  X  0  X  0  0  X  X  0  X  X  X  0  X  0  X  0  X  0  0  X  X  X  0  0  0  0  X  0  0  X  X  X  X  X  X  X  X  X  X  0  X  X  X  X  X  X  X  0  0
 0  0  0  0  0  X  0  0  0  X  X  X  X  X  X  X  X  0  0  X  0  X  0  0  0  0  0  X  X  X  X  X  0  X  0  0  X  0  0  X  0  X  X  X  0  0  X  X  0  X  0  0  X  0  0  0  X  X  0  X  0  0  0

generates a code of length 63 over Z2[X]/(X^2) who�s minimum homogenous weight is 58.

Homogenous weight enumerator: w(x)=1x^0+109x^58+100x^60+96x^62+68x^64+51x^66+24x^68+15x^70+20x^72+8x^74+8x^76+9x^78+3x^80

The gray image is a linear code over GF(2) with n=126, k=9 and d=58.
This code was found by Heurico 1.16 in 0.625 seconds.